Experiments with ruby-processing (processing-2.2.1) and JRubyArt for processing-3.0

Monday, 6 October 2014

Vec3D to shape vertex in JRubyArt

Here is a shader sketch that will run with regular jruby and the JRubyArt gem, converted from ruby-processing. The original processing sketch by Andrés Colubri used PVector, the use Vec3D allows us to chain vector operations, and further (thanks to the ShapeRender interface) write them directly to the PShape verticies.

 
# Trefoil, by Andres Colubri
# A parametric surface is textured procedurally
# by drawing on an offscreen PGraphics surface.
#
# Features (Vec3D).to_normal(renderer) and (Vec3D).to_vertex_uv(renderer, u, v)
# see line 55 for inititialization of renderer where obj is an instance of PShape
# renderer = ShapeRender.new(obj)
require 'jruby_art'

class Trefoil < Processing::AppGL

  attr_reader :pg, :trefoil

  def setup
    size(1024, 768, P3D)
    texture_mode(NORMAL)
    no_stroke
    # Creating offscreen surface for 3D rendering.
    @pg = create_graphics(32, 512, P3D)
    pg.begin_draw
    pg.background(0, 0)
    pg.noStroke
    pg.fill(255, 0, 0, 200)
    pg.end_draw
    # Saving trefoil surface into a PShape3D object
    @trefoil = create_trefoil(350, 60, 15, pg)
  end

  def draw
    background(0)
    pg.begin_draw
    pg.ellipse(rand(0.0..pg.width), rand(0.0..pg.height), 4, 4)
    pg.end_draw
    ambient(250, 250, 250)
    pointLight(255, 255, 255, 0, 0, 200)
    push_matrix
    translate(width/2, height/2, -200)
    rotate_x(frame_count * PI / 500)
    rotate_y(frame_count * PI / 500)
    shape(trefoil)
    pop_matrix
 end

  # Code to draw a trefoil knot surface, with normals and texture 
  # coordinates. Makes of the Vec3D Render interface (uses ShapeRender here).
  # Adapted from the parametric equations example by Philip Rideout:
  # http://iphone-3d-programming.labs.oreilly.com/ch03.html

  # This function draws a trefoil knot surface as a triangle mesh derived
  # from its parametric equation.
  def create_trefoil(s, ny, nx, tex)
    obj = create_shape()
    obj.begin_shape(TRIANGLES)
    obj.texture(tex)
    renderer = ShapeRender.new(obj)
    (0 ... nx).each do |j|
      u0 = j.to_f / nx
      u1 = (j + 1).to_f / nx
      (0 ... ny).each do |i|
        v0 = i.to_f / ny
        v1 = (i + 1).to_f / ny
        p0 = eval_point(u0, v0)
        n0 = eval_normal(u0, v0)
        p1 = eval_point(u0, v1)
        n1 = eval_normal(u0, v1)
        p2 = eval_point(u1, v1)
        n2 = eval_normal(u1, v1)
        # Triangle p0-p1-p2      
        n0.to_normal(renderer)
        (p0 * s).to_vertex_uv(renderer, u0, v0)
        n1.to_normal(renderer)
        (p1 * s).to_vertex_uv(renderer, u0, v1)
        n2.to_normal(renderer)
        (p2 * s).to_vertex_uv(renderer, u1, v1)
        p1 = eval_point(u1, v0)
        n1 = eval_normal(u1, v0)
        # Triangle p0-p2-p1      
        n0.to_normal(renderer)
        (p0 * s).to_vertex_uv(renderer, u0, v0)
        n2.to_normal(renderer)
        (p2 * s).to_vertex_uv(renderer, u1, v1)
        n1.to_normal(renderer)
        (p1 * s).to_vertex_uv(renderer, u1, v0)
      end
    end
    obj.end_shape
    return obj
  end

  # Evaluates the surface normal corresponding to normalized 
  # parameters (u, v)
  def eval_normal(u, v)
    # Compute the tangents and their cross product.
    p = eval_point(u, v)
    tang_u = eval_point(u + 0.01, v)
    tang_v = eval_point(u, v + 0.01)
    tang_u -= p
    tang_v.cross(tang_u).normalize! # it is easy to chain Vec3D operations
  end

  # Evaluates the surface point corresponding to normalized 
  # parameters (u, v)
  def eval_point(u, v)
    a = 0.5
    b = 0.3
    c = 0.5
    d = 0.1
    s = TAU * u
    t = (TAU * (1 - v)) * 2
    sint = Math.sin(t)
    cost = Math.cos(t)
    sint15 = Math.sin(1.5 * t)
    cost15 = Math.cos(1.5 * t)
    r = a + b * cost15
    x = r * cost
    y = r * sint
    z = c * sint15
    dv = Vec3D.new(
      -1.5 * b * sint15 * cost - y,
      -1.5 * b * sint15 * sint + x,
      1.5 * c * cost15)
    q = dv.normalize     # regular normalize creates a new Vec3D for us
    qvn = Vec3D.new(q.y, -q.x, 0).normalize!  # chained Vec3D operations
    ww = q.cross(qvn)
    coss = Math.cos(s)
    sins = Math.sin(s)
    Vec3D.new(
      x + d * (qvn.x * coss + ww.x * sins),
      y + d * (qvn.y * coss + ww.y * sins),
      z + d * ww.z * sins)
  end
end

Trefoil.new(title: 'Trefoil', fullscreen: true, bgcolor: '#000000')





No comments:

Post a Comment

Followers

Blog Archive

About Me

My photo
I have developed JRubyArt and propane new versions of ruby-processing for JRuby-9.1.5.0 and processing-3.2.2