Here I use ruby-processings control_panel to create a gui for my shape recognition, which can load custom shapes (drawn in processing) or pre-built test data (see CROSS_WITH_NOISE below). See
OCRExample here to learn more.
require 'ai4r'
load_library :vecmath, :control_panel
require_relative 'training_patterns.rb'
attr_reader :img, :img_pixels, :ci_input, :cr_input, :tr_input, :sq_input, :net, :points, :panel, :hide, :drawing
def setup
size(320, 320)
control_panel do |c|
c.title = "control"
c.look_feel "Nimbus"
c.checkbox :drawing
c.button :clear
c.button :evaluate
c.menu :shape, ['CIRCLE', 'CROSS', 'CROSS_WITH_NOISE', 'SQUARE', 'TRIANGLE', 'DEFAULT']
@panel = c
end
@hide = false
@points = []
srand 1
@net = Ai4r::NeuralNetwork::Backpropagation.new([256, 3])
@ci_input = CIRCLE.flatten.collect { |input| input.to_f / 127.0}
@tr_input = TRIANGLE.flatten.collect { |input| input.to_f / 127.0}
@sq_input = SQUARE.flatten.collect { |input| input.to_f / 127.0}
@cr_input = CROSS.flatten.collect { |input| input.to_f / 127.0}
train
background 255
end
def draw
unless hide
@hide = true
panel.set_visible(hide)
end
if drawing
stroke_weight 32
stroke 127
points.each_cons(2) { |ps, pe| line ps.x, ps.y, pe.x, pe.y}
else
no_fill
stroke_weight(32)
stroke(127)
case @shape
when 'CIRCLE'
background(255)
draw_circle
@shape = 'DEFAULT'
when 'CROSS'
background(255)
draw_cross
@shape = 'DEFAULT'
when 'CROSS_WITH_NOISE'
background(255)
draw_shape CROSS_WITH_NOISE
@shape = 'DEFAULT'
when 'SQUARE'
background(255)
draw_square
@shape = 'DEFAULT'
when 'TRIANGLE'
background(255)
draw_triangle
@shape = 'DEFAULT'
end
end
end
def draw_shape shape
background(255)
no_stroke
(0 ... width / 20).each do |i|
(0 ... height / 20).each do |j|
col = 255 - shape[i][j]
fill(col)
rect(i * 20, j * 20, 20, 20)
end
end
end
def train
puts "Training Network Please Wait"
101.times do |i|
error = net.train(tr_input, [1.0, 0, 0])
error = net.train(sq_input, [0, 1.0, 0])
error = net.train(cr_input, [0, 0, 1.0])
error = net.train(ci_input, [0, 1.0, 1.0])
puts "Error after iteration #{i}:\t#{format("%.5f", error)}" if i%20 == 0
end
end
def result_label(result)
if result.inject(0, :+).between?(1.9, 2.1)
if result[0] < 0.01 && result[1].between?(0.99, 1.0) && result[2].between?(0.99, 1.0)
return "CIRCLE"
else
return "UNKNOWN"
end
elsif result.inject(0, :+).between?(0.95, 1.1)
if result[0].between?(0.95, 1.0) && (result[1] + result[2]) < 0.01
return "TRIANGLE"
elsif result[1].between?(0.95, 1.0) && (result[0] + result[2]) < 0.01
return "SQUARE"
elsif result[2].between?(0.95, 1.0) && (result[1] + result[0]) < 0.01
return "CROSS"
else
return "UNKNOWN"
end
end
return "UNKNOWN"
end
def mouse_dragged
points << Vec2D.new(mouse_x, mouse_y)
end
def mouse_released
points.clear
end
def draw_circle
ellipse(width / 2, height / 2, 320 - 32, 320 - 32)
end
def draw_square
rect(16, 16, 320 - 32, 320 - 32)
end
def draw_cross
line(width / 2, 0, width / 2, 320)
line(0, height / 2, 320 , height / 2)
end
def draw_triangle
triangle(width / 2, 32, 24, height - 16, width - 24, height - 16)
end
def clear
background 255
end
def evaluate
load_pixels
img_pixels = []
(0...height).step(20) do |y|
row = []
(0...width).step(20) do |x|
row << 255 - brightness(pixels[(y + 10) * width + x + 10])
end
img_pixels << row
end
puts "#{net.eval(img_pixels.flatten).inspect} => #{result_label(net.eval(img_pixels.flatten))}"
end
No comments:
Post a Comment